

Training Program

Ref:D ESS - 09/27/2025

Essential DSP implementation techniques for AMD FPGAs

COURSE DURATION

2 days - 14 hours

TARGET OBJECTIVES AND SKILLS

- 1 Describe the advantages of using FPGAs over traditional processors for DSP designs, utilize fixed point binary arithmetic and identify how to use this knowledge to create efficient designs in FPGAs
- 2 Recognize how both the CLB slices in FPGAs and the more advanced DSP48s are used to implement DSP algorithms
- 3 Explain the dataflow through the device and how to use distributed memory, block RAM, registers, and SRLs to properly implement these designs
- 4 Construct different FIR filter and FFT implementations and how to optimize these implementations in the FPGA

CONCERNED PUBLIC

- Technicians and Engineers in Digital Electronics
- All our training courses are given at a distance and are accessible to people with reduced mobility.
- People with disabilities may have special training needs. Our partner AGEFIPH accompanies us to implement the necessary adaptations related to your disability. Don't hesitate to to discuss your requirements.

PREREQUISITES

- Fundamental understanding of digital signal processing theory and an appreciation of the principles of the following
 - Sample rates
 - FIR (Finite Impulse Response) and IIR (Infinite Impulse Response) filters
 - Oscillators and Mixers
 - o FFT (Fast Fourier Transform) algorithm

NOTES

• Release date: 15/11/2024

Training Program

Ref:D ESS - 09/27/2025

COURSE CONTENT

DAY 1

- Objective 1
 - Back to basics {Lecture}
- Objective 2
 - Architecture of FPGAs {Lecture}
 - Mathematics of FPGAs {Lecture, Lab}

- Objective 3
 - Shift registers, memory and application {Lecture, Lab}
- Objective 4
 - The FIR filter {Lecture, Lab}

DAY 2

- Objective 4
 - Advanced filtering techniques {Lecture, Lab}
 - The Fast Fourier Transform {Lecture, Lab}

TEACHING METHODS AND SUPPORT - ASSESSMENT & RECOGNITION

- Teaching methods :
 - Alternating lectures, technical questionnaires and exercises on individual machines.
- Pedagogical follow-up:
 - Signed attendance sheet
- Pedagogical assessment:
 - o Continuous assessment and progress sheet :
 - Technical questionnaire
 - Practical work results
 - Validation of objectives
- Satisfaction survey :
 - o At the end of training: assessment form completed by the trainee
 - At 3 months: evaluation form completed by the trainee after application to the company
- Certificate:
 - o Training certificate with assessment of learning provided to trainee
 - o Certificate of completion provided to employer

Training Program

Ref:D ESS - 09/27/2025

TEACHING METHODS

- Inter-company online training :
 - o Fast Internet connection, webcam, headset
 - Presentation by Webex by Cisco

- o Provision of course material in PDF format
- Labs on individual Cloud PC by RealVNC

GREALVIC

- Intra-company face-to-face training on customer site
 (details to be confirmed prior to training)
 - Suggested supply by the customer :
 - Training room
 - Video projector
 - Whiteboard
 - Individual PC with AMD tools
 - o Provided by MVD Training :
 - Course material in PDF format
 - Practical work on individual PCs (loan of equipment available on request)

RECOMMENDED COMPUTER HARDWARE

- Inter-company online training:
 - Recent computer OS Linux or Windows 64-bits
 - o Fast Internet, webcam, headset
 - Software tool WebEx Cisco
 - AMD remote tools :
 - Software tool RealVNC Viewer
 - AMD local tools :
 - Software tool AMD Vivado
 - Software tool Matlab (or equivalent)
- Face-to-face training on customer site :
 - o Recent computer OS Linux or Windows 64-bits
 - Software tool AMD Vivado
 - Software tool Matlab (or equivalent)

TEACHING STAFF

- William Duluc, Electronics and Telecoms Engineer, AMD Expert since 2009 and AMD Trainer since 2017 :
 - Expert AMD FPGA Language VHDL/Verilog RTL Design
 - Expert AMD SoC & MPSoC Language C/C++ System Design
 - o Expert DSP & AMD RFSoC HLS Matlab Design DSP RF
 - o Expert AMD Versal Al Engines Heteregenous System Architect

TECHNICAL, EDUCATIONAL, ADMINISTRATIVE AND FINANCIAL CONTACT

William DULUC, 06 74 52 37 89, info@mvd-training.com